Masassiah Blog

Masassiah のブログです。主に読書で得た気づきをまとめています。

三角形状分布荷重を受ける片持ちはりの SFD,BMD,たわみ曲線の計算・グラフ化

2020年3月20日更新

はじめに

本稿では,三角形状分布荷重を受ける片持ちはりのせん断力図(SFD),曲げモーメント図(BMD),たわみ曲線を MATLABOctave により計算,グラフ化する方法について述べる。

三角形状分布荷重を受ける片持ちはり

三角形状分布荷重を受ける片持ちはり

概要

三角形状に分布する荷重(以下,三角形状分布荷重。線形分布荷重ともいう。)を受ける片持ちはり*1(cantilever)の

  • せん断力(shearing force)
  • 曲げモーメント(bending moment)
  • たわみ(deflection)

を計算する MATLABOctave プログラムを作成した。

プログラムで計算した結果に基づき,

  • せん断力図(SFD : Shearing Force Diagram)
  • 曲げモーメント図(BMD : Bending Moment Diagram)
  • たわみ曲線(deflection curve)

をグラフとして描画する。

なお,三角形状分布荷重を受ける片持ちはりの「せん断力」「曲げモーメント」「たわみ」の計算過程やグラフについては,以下のページでわかりやすく,そして詳細に解説する。

masassiah.web.fc2.com

プログラムのソースコード

# パラメータの設定
xx=0:1:1000; ll=1000;  %[mm] q0=0.1;   %[N] EE=200000;%[N/mm2] 縦弾性係数 Iz=3000;  %[mm4]   断面二次モーメント # せん断力の計算 Qx=-q0/2/ll*xx.^2;
# 曲げモーメントの計算 Mx=-q0/6/ll*xx.^3;
# たわみの計算 yx=q0/120/EE/Iz/ll*(xx.^5-5*ll^4*xx+4*ll^5); # せん断力図の描画 figure(1); plot(xx,Qx); xlabel('x [mm]');ylabel('shearing force [N]'); # 曲げモーメントの描画 figure(2); plot(xx,Mx); xlabel('x [mm]');ylabel('bending moment [N・mm]'); # たわみ曲線の描画 figure(3); plot(xx,yx); xlabel('x [mm]');ylabel('y [mm]');

計算条件

長さ 1,000 [mm] の片持ちはりの支持部にはたらく荷重 0.1 [N],先端にはたらく荷重 0 [N] の三角形状分布荷重を想定し,せん断力,曲げモーメント,たわみを計算している。

なお,縦弾性係数は 200,000 [N/mm2],断面二次モーメントは 3,000 [mm4] を想定し,たわみを計算した。

プログラムの説明

  • figure(1) では,せん断力図(SFD : Shearing Force Diagram)を描画
  • figure(2) では,曲げモーメント図(BMD : Bending Moment Diagram)を描画
  • figure(3) では,たわみ曲線(deflection curve)を描画

グラフの説明

三角形状分布荷重を受ける片持ちはりの SFD,BMD,たわみ曲線のグラフを以下に示す。

せん断力図(SFD)

三角形状分布荷重を受ける片持ちはりのせん断力図(SFD)を下図に示す。
せん断力は,単純減少する二次関数で表される。

三角形状分布荷重を受ける片持ちはりの SFD

三角形状分布荷重を受ける片持ちはりの SFD

曲げモーメント図(BMD)

三角形状分布荷重を受ける片持ちはりの曲げモーメント図(BMD)を下図に示す。
曲げモーメントは,単純減少する三次関数で表される。

三角形状分布荷重を受ける片持ちはりの BMD

三角形状分布荷重を受ける片持ちはりの BMD

たわみ曲線

三角形状分布荷重を受ける片持ちはりのたわみ曲線を下図に示す。
たわみは,片持ちはりの先端で最大,はりの支持点で最小(y = 0 [mm])となり,その減少は,五次関数で表される。

三角形状分布荷重を受ける片持ちはりのたわみ曲線

三角形状分布荷重を受ける片持ちはりのたわみ曲線

*1:片側が回転も移動もできない固定支持(fixed support)で支持されるはり。